38 research outputs found

    Trapped Modes in Linear Quantum Stochastic Networks with Delays

    Get PDF
    Networks of open quantum systems with feedback have become an active area of research for applications such as quantum control, quantum communication and coherent information processing. A canonical formalism for the interconnection of open quantum systems using quantum stochastic differential equations (QSDEs) has been developed by Gough, James and co-workers and has been used to develop practical modeling approaches for complex quantum optical, microwave and optomechanical circuits/networks. In this paper we fill a significant gap in existing methodology by showing how trapped modes resulting from feedback via coupled channels with finite propagation delays can be identified systematically in a given passive linear network. Our method is based on the Blaschke-Potapov multiplicative factorization theorem for inner matrix-valued functions, which has been applied in the past to analog electronic networks. Our results provide a basis for extending the Quantum Hardware Description Language (QHDL) framework for automated quantum network model construction (Tezak \textit{et al.} in Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 370(1979):5270-5290, to efficiently treat scenarios in which each interconnection of components has an associated signal propagation time delay

    Systematic Stochastic Reduction of Inertial Fluid-Structure Interactions subject to Thermal Fluctuations

    Full text link
    We present analysis for the reduction of an inertial description of fluid-structure interactions subject to thermal fluctuations. We show how the viscous coupling between the immersed structures and the fluid can be simplified in the regime where this coupling becomes increasingly strong. Many descriptions in fluid mechanics and in the formulation of computational methods account for fluid-structure interactions through viscous drag terms to transfer momentum from the fluid to immersed structures. In the inertial regime, this coupling often introduces a prohibitively small time-scale into the temporal dynamics of the fluid-structure system. This is further exacerbated in the presence of thermal fluctuations. We discuss here a systematic reduction technique for the full inertial equations to obtain a simplified description where this coupling term is eliminated. This approach also accounts for the effective stochastic equations for the fluid-structure dynamics. The analysis is based on use of the Infinitesmal Generator of the SPDEs and a singular perturbation analysis of the Backward Kolomogorov PDEs. We also discuss the physical motivations and interpretation of the obtained reduced description of the fluid-structure system. Working paper currently under revision. Please report any comments or issues to [email protected]: 19 pages, 1 figure. arXiv admin note: substantial text overlap with arXiv:1009.564

    The First Three Rungs of the Cosmological Distance Ladder

    Get PDF
    It is straightforward to determine the size of the Earth and the distance to the Moon without making use of a telescope. The methods have been known since the 3rd century BC. However, few amateur or professional astronomers have worked this out from data they themselves have taken. Here we use a gnomon to determine the latitude and longitude of South Bend, Indiana, and College Station, Texas, and determine a value of the radius of the Earth of 6290 km, only 1.4 percent smaller than the true value. We use the method of Aristarchus and the size of the Earth's shadow during the lunar eclipse of 2011 June 15 to derive an estimate of the distance to the Moon (62.3 R_Earth), some 3.3 percent greater than the true mean value. We use measurements of the angular motion of the Moon against the background stars over the course of two nights, using a simple cross staff device, to estimate the Moon's distance at perigee and apogee. Finally, we use simultaneous CCD observations of asteroid 1996 HW1 obtained with small telescopes in Socorro, New Mexico, and Ojai, California, to derive a value of the Astronomical Unit of (1.59 +/- 0.19) X 10^8 km, about 6 percent too large. The data and methods presented here can easily become part of a beginning astronomy lab class.Comment: 34 pages, 11 figures, accepted for publication in American Journal of Physic

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Get PDF
    In the last two decades there have been dramatic changes in the epidemiology of Clostridium difficile infection (CDI), with increases in incidence and severity of disease in many countries worldwide. The incidence of CDI has also increased in surgical patients. Optimization of management of C difficile, has therefore become increasingly urgent. An international multidisciplinary panel of experts prepared evidenced-based World Society of Emergency Surgery (WSES) guidelines for management of CDI in surgical patients.Peer reviewe

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Full text link

    Stochastic Reductions for Inertial Fluid-Structure Interactions Subject to Thermal Fluctuations

    No full text
    corecore